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Abstract: The imperative need for alternative approaches to organ transplantation, replacing or 

regenerating damaged tissues is the key driving force for the remarkable development in tissue 

engineering. It can be precious in saving people who suffer from the critical shortage of organ 

donation. Such a strategy can repair injured body parts and tissues by using biomaterials, cells, and 

bioactive agents. Even though numerous scaffold manufacturing techniques have been available for 

bone regeneration, the three-dimensional (3D) printing approach can provide scaffolding with delicate 

features that may not be obtainable in other manufacturing strategies. For instance, when a 3D printer 

is used, it is possible to easily adjust scaffold pore architecture and size, porosity, and material 

alignment, forming customizable and defect-fillable scaffolds, which helps control the mechanical 

behavior of cellular response. The most prominent material used in scaffolding and printing is 

polycaprolactone (PCL), owing to its considerable potential and capabilities. It has favorable 

properties for the fabrication of bone tissue engineering scaffolds, such as biocompatibility, 

viscoelasticity, and affordability. Nonetheless, some inherent drawbacks of this polymer that limit its 

use in this field are detected, including inadequate mechanical performance, cell adhesion, 

osteoinductive deficiency, hydrophobicity, and low degradation rate. The incorporation of other 

materials within this polymer to form composites, on the other hand, can contribute to alleviating the 

negative influence of the PCL's undesirable characteristics. Improving the mechanical and biological 

behaviors of PCL-based scaffolds allows these structures to be utilized for tissue engineering since 

such composites can promote cell adhesion and differentiation, mimic anatomical characteristics of 

native bone, and can have superior mechanical performance. In this review, the latest advancements in 

printing intricate geometries 3D PCL-based composites using bioactive ceramics and/or biopolymers 

by fused deposition modeling (FDM) for bone tissue engineering will be explored, particularly from a 

morphological, mechanical, and biological perspective.  
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1. Introduction 

Tissue engineering (TE) is a multidisciplinary field that is currently receiving tremendous attention to 

replace or repair tissues and organs by combining cells and biomaterials [1, 2]. Now, bone transplantation 

is highly demanded due to the enormous incidence of bone defects, which are principally brought about 

by bone contagions, tumors, and trauma [3, 4]. Nonetheless, traditional bone grafts, namely, autografts, 

allografts, and xenografts, cannot be entirely satisfactory from a clinical point of view. For example, 

autografts are generally restricted by donor deficiency and site morbidity, while the other two methods 

are constrained by the prospective risk of immune response [5, 6]. Bone tissue engineering (BTE) is a 

profitable strategy for constructing bone replacements that could overcome the shortcomings mentioned 

above [7]. An optimal bone scaffold should offer structural support for seeded or encapsulated cells and 

generate a preferable environment for cell responses, osteogenesis, and eventually tissue repair [8]. On 

that account, the development of new bioactive materials to induce osteogenesis for BTE is highly 

desirable. BTE has three broad constituents: cells, bioactive molecules, and scaffold. The scaffold 

considerably influences nutrients and waste transport and induces cell attachment and proliferation [9, 

10]. Regular strategies such as foaming [11], particle/salt leaching [12], freeze-drying [13], and 
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electrospinning [14, 15] have been utilized for scaffold manufacturing. One chief downside is that porous 

scaffolds produced by conventional approaches cannot be comprehensively adjustable in terms of the 

geometrical factors, including porosity and pore interconnection size. Furthermore, scaffolds with on-

demand porosity for particular defects are challenging to fabricate with most of these strategies. Additive 

manufacturing is a versatile approach that makes it feasible to fabricate 3D structures from various 

materials with complex and precision engineering [16-18]. The application of 3D printed scaffolds for TE 

has gained substantial consideration in the last few years. 3D printing can provide a designed shape with 

superb 3D macroscopic and microscopic structures that are well-known to be advantageous for cell 

infiltration, transport of nutrients and metabolic waste, and individualised bone defect repair treatment 

[19-22]. Apart from that, with this approach, it is also possible to take advantage of the progress achieved 

in other means such as the finite element method in designing and producing scaffolding with the 

required specifications [23, 24]. 

It is alleged that the most common approaches in TE are scaffolds, which are 3D structures 

resembling extracellular matrix and allowing proper mechanical and biological support for the neo-tissue 

fabrication [25-28]. PCL is a biodegradable aliphatic synthetic polymer [29] that is mostly utilized as a 

3D scaffold due to its nontoxicity, compatibility (it is an FDA-approved polyester), relatively low melting 

and glass transition temperatures; at normal human body temperature, the semi-crystalline PCL 

accomplishes a rubbery shape causing its remarkable toughness [30, 31]. PCL parts present a remarkably 

plastic deformation before fracturing. Figure 1 demonstrates various stages of the PCL tensile test; when 

necking is commenced, it will carry on to propagate along with the specimen, resulting in high strain 

levels [32].  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proper rheological and viscoelastic features of PCL allow the fabrication of a wide range of 

scaffolds using traditional and modern procedures [33-36]. Its scaffolds have been extensively examined 

for TE; nevertheless, they exhibit weak mechanical properties [37, 38], and their hydrophobic nature 

prevents cell adhesion and proliferation [38, 39]. Consequently, PCL-based composites have ameliorated 

the material characteristics, cellular activity, and degradation rate compared to neat PCL [40-43]. To 

enhance scaffold features, including mechanical and surface characteristics and biocompatibility, diverse 

kinds of additives have been applied to modify PCL. The advancement of composites allows fashion to 

 

 
 

Fig. 1  PCL behavior during different stages of the tensile test [32]. 
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fashion, to a large degree, biomaterials with suitable mechanical and physiological behaviors and varying 

porosity inside complex geometries. 

Additionally, adjusting the reinforcing phase's type, dimension, loading, morphology, and distribution 

promotes living cells' attachment, migration, proliferation, and differentiation within the scaffold [44]. To 

tune the mechanical property based on the required tissue (Figure 2), the fabrication method, porosity, 

and reinforcement can be chosen. For example, attributable to the presence of pores, porous and fibrous 

PCL structures are mechanically weaker than bulk PCL [45]. 

Furthermore, Górecka et al. found that the diameter of PCL fibres had a profound impact on 

microstructure and mechanical characteristics. The modulus of elasticity and strength decreased with 

increasing fibre diameter [46]. Besides, it was found that the 3D PCL honeycomb structure could have 

exceptional repeatability under compressive loads [47].  

 

 

2. Fused Deposition Modelling (FDM) 
Additive manufacturing or 3D printing has been extensively applied in diverse fields, including 

construction, biomechanical, and medicine [18, 20]. It is a computer-aided additive manufacturing 

procedure to produce a wider variety of complex geometry structures from 3D model data. The route 

comprises consecutive printing layers of materials that are made one over the other (layer by layer) [18, 

49-51]. Charles Hull developed this technique in a method termed stereolithography, followed by the 

emergence of other types, including FDM and inkjet printing [18].  

For medical and bioengineering applications, FDM has been of tremendous interest in 3D printing 

technology in recent years [50, 52]. Compared to other 3D printing methods, this technique is affordable, 

easy to use, small in size, and capable of manufacturing multifunctional parts [53, 54]. This approach is 

also frequently called fused filament fabrication (FFF) and has been commercially accessible for nearly 

three decades [55]. In this process, a thermoplastic filament is extruded from a nozzle; the nozzle 

contains a heater that assists in softening the filament [56, 57] (Figure 3). Such filament is then solidified 

and deposited due to a fan attached at the nozzle end [57, 58]. Compared with other 3D printing 

approaches, FDM offers the capability to use more than one type of material during the printing process 

(FDM printers with dual extruders) [58-60].  

FDM is used to manufacture customized defect corresponding constructions for bone healing. It 

 

Fig. 2 Stiffness of various human tissues [48]. 
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provides personalized complex geometry scaffolds in various porosity and pore sizes to facilitate cell 

spreading and differentiation [61-64]. PCL is considered one of the predominant thermoplastics for 

benchtop FDM due to its low melting point at about 60  and proper fiber diameter. It sustains high 

crystallization and adequate mechanical behaviors after fabrication [50, 65, 66].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

3. 3D Printed PCL-Based Scaffolds Manufactured by FDM for BTE 
Many biomaterials have been assessed as scaffolds for healing or repairing disordered bone, including 

metallic, bioactive ceramic, and biopolymer materials [68, 69]. PCL has potential applications for bone 

repair for the considerable pore volume of PCL scaffolds that affords greater bone regeneration. Owing to 

its low degradation rate (more than two years), PCL seems more favorable compared with the other 

biodegradable polymers [70]; degradation occurs typically by microbes or by hydrolysis of its ester 

linkage under physiological circumstances [71]. The PCL-based structures offer appropriate 

biomechanical aspects, can be easily printable, and is inexpensive [72-75]. The interaction between 

mesenchymal stem cells (MSCs) and PCL has been investigated for attaining scaffolds through 3D 

printing predominantly in tissue with a long regeneration period, which entails mechanically sufficient 

performance 3D supports [76]. In this regard, several studies have been carried out to form PCL-based 

composites for the engineering of bone tissue. Such composites have been fabricated by incorporating 

bioceramics, biopolymers, or both within PCL. 

 

   3.1. 3D Printed PCL-Bioceramic Composite Scaffolds 
As long as they have chemical and structural features comparable to the mineral phase of bones, 

bioceramics have been broadly evaluated for bone treatment [77, 78]. Nonetheless, their poor 

physicochemical properties [78, 79] and brittle nature impede their bone restoration applications [79, 80]. 

On the other hand, the problem with PCL is hydrophobicity and the lack of tendency for cell adhesion 

[81, 82]. From a biological standpoint, cells typically require a rigid substrate to be attached and 

increased [83]. Therefore, these issues can be overcome when combined with PCL bioactive ceramics. 

The fabricated composite could perform better than the unreinforced structure to serve as TE scaffolds 

[36]. Several bioactive ceramics have been utilized with PCL, including Beta-tricalcium phosphate (β-

TCP) and hydroxyapatite (HA), all of which have a comparable bone mineral phase [84]. HA exhibits 

unique biological aspects such as osteoinductivity and biocompatibility [85, 86] due to its chemical 

 

Fig. 3. Schematic of FDM [67]. 

 



Misan Journal of Engineering Sciences                                              

Vol. 1, No. 1, June 2022 

 

37                                                         https://www.uomisan.edu.iq/eng/mjes/  

composition that promotes rapid and strong attachment of proteins and amino acids to its surface, 

resulting in efficient hard tissue regeneration [87, 88]. Filaments made of PCL/HA created scaffolds and 

testbeds for mimicking bone anatomy (Figure 4) [73]. 3D PCL/HA could be used to heal load-bearing 

disordered bone [89]. The size of HA particles was revealed to have a key role in governing the 

composite scaffold's overall properties; the HA particles in the nHA/PCL were consistently dispersed 

while agglomerated in the microsized scaffold. The tensile and flexural strength of the nHA/PCL 

structures were higher than those of neat PCL and micro-HA/PCL scaffolds [90]. An opposite correlation 

between porosity and compressive modulus was demonstrated, with compressive properties that could 

match human trabecular bone [91].  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strontium-containing HA (SrHA) has also the capability of bone repair or replacement as a 

consequence of similar inorganic constituents with native bone; therefore, it can promote osteoblast and 

alkaline phosphatase (ALP) activity [92, 93]. The presence of SrHA within the scaffold markedly enabled 

the BMSCs proliferation; these scaffolds prompted greater osteo-related gene expressions and in vivo 

cranial bone restoration compared to SrHA-free scaffolds [94]. MicroCT analysis for this type of 

composites revealed porosity within the levels of human cancellous bone. The SrHA-containing 

constructs were shown to have higher levels of mineralization and osteogenesis for hTERT-MSCs 

contrasted to loaded-free PCL and PCL/HA scaffolds [95].  

Bioactive glasses (BG) are also used in BT applications for their marked ability to bond with bones 

and their stimulating impacts on neo-bone creation [96, 97]. On the other hand, they are not as applicable 

in load-bearing structures due to their low flexibility and strength. Nonetheless, incorporating them with 

polymers could raise the osteoconductivity and degradation rate of the resulting composite. The addition 

of BG to PCL could also compensate for its hydrophobicity and deficient cell response [98]. 

Incorporating BGS-7 into PCL could overcome the mechanical shortcoming of using this kind of 

bioglass scaffolds alone, particularly the brittleness. BGS-7/PCL displayed an enhancement in toughness 

compared to that of the blank bioglass scaffold with a comparable porosity. The in vitro biological 

activity of blank PCL, BGS-7, and composite scaffolds revealed that increasing the weight fraction of BG 

caused a significantly enhancement in the MC3T3-E1 cells proliferation and osteoconductivity, and 

appropriate mechanical properties [99]. The interaction of HA, BG, or both bioceramic on PCL critically 

facilitates cellular activity and improves osteogenic differentiation in the formed scaffolds [100]. 

β-TCP has also been revealed to have the ability to support osteoinductivity and osteoconductivity. 

Concomitantly, bone tissue scaffolds formed with β-TCP effectively healed bone in animal models [101]; 

thus, PCL–β-TCP composites have been commonly applied in bone reformation. The fabricated PCL–β-

TCP scaffolds containing 20 wt% of β-TCP exhibited a square pore-shaped structure with 100% 

 

Fig. 4 (a) FDM 3D printed bone scaffolding and (b) structure of bone mimetic [73]. 
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interconnected pores. The offset scaffolds revealed superior mechanical and biological enhancements, 

including high bending modulus, osteoblast-like cell (MG63)-seeding effectiveness, and calcium 

deposition [102]. In another work, Bruyas et al. examined the influence of electron beam (E-beam) 

sterilization on PCL/β-TCP properties. They found that such irradiation was not shown to tailor the 

scaffold's surface characteristics, while stiffness and strength were observed to enhance. 

Moreover, the modified scaffolds had faster degradation and did not influence the viability and 

differentiation of cells implanted on these composites [103]. β-TCP could control the degradation rate 

and enhance the osteogenic differentiation of C3H10 [104]. The 3D PCL/β-TCP scaffold was also 

fabricated (Figure 5) and modified by amine plasma-polymerization to increase the MC3T3-E1 cell 

activity in vitro. Amine plasma-polymerization led to a considerable rise in the hydrophilicity of the 

composite surface while it did not affect surface roughness. In addition, amine plasma-polymerization on 

3D PCL/β-TCP [105] and oxygen plasma treatment on 3D PCL [106] were observed to positively 

influence cell proliferation and differentiation. 

 

 

 

 

 

 

3D printed porous PCL scaffolds were also functionalized with broadly used clinically minerals, 

namely TCP, HA, Bio-Oss (BO), or decellularized bone matrix (DCB). The incorporation of such 

additives did not considerably reduce the compressive graft modulus. Calcium content, Collagen type1, 

and osteocalcin expression of adipose-derived stromal stem cells indicated that PCL-BO and PCL-DCB 

composite might be preferred for bone treatment over PCL-HA or PCL-TCP [107]. NaOH treatment 

improved hydrophilicity and roughness of FDM 3D hollow cage-shaped PCL scaffolds, which promoted 

hBMSCs activity. Additionally, PCL-BO presented osteogenic capacity in vivo (Figure 6) [108]. PCL-BO 

and PCL-DCB exhibited a better bone healing capacity in vivo than PCL-HA or PCL-TCP [107].  

Biomedical uses of calcium carbonate (CaCO3) have attracted special interest owing to its enormous 

potential and capabilities. Such material is affordable, non-toxic, osteoconductive [109, 110], and has a 

low degradation rate [111]. Neumann et al. incorporated CaCO3 in different concentrations into highly 

 
Fig. 5 (A-1) and (A-2) plane and side view photographs for 3D PCL-based scaffold, 

respectively for in vitro test; (B-1) and (B-2) plane and side view photographs for 3D PCL-

based scaffold, respectively for mechanical strength assessment [105]. 
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porous PCL scaffolds to enhance their osseointegration, mechanical behavior, and degradation rate. It 

was pointed out that 33% CaCO3-PCL-based scaffold could have a higher in vitro apatite formation [112].  

When 3D printed PCL/graphene scaffolds were used to remedy a rat calvaria critical-sized defect, this 

scaffold allowed an increment in cell migration, causing neo-tissue creation and effective bone 

remodeling [113]. Contrary to graphene, which enhances mechanical properties, and cell proliferation, 

graphene oxide demonstrates some cytotoxicity, particularly at great loading [114]. For the same purpose 

but with other materials, Nigoghossian et al. [115] and Zhang et al. [116] combined PCL with 

upconversion nanoparticles (UCNPs)-apatite and pearl powder, respectively. For both these composites, 

the mechanical property was revealed to improve with the increase concentration of reinforcement used. 

 

 
 

   3.2. 3D Printed PCL-Biopolymer Composite Scaffolds 
Biopolymers are presently utilized to create bone scaffolds due to their biocompatibility, 

biodegradation, and uncomplicated processability [117-120]. FDM 3D printing was used to form a 

composite scaffold produced from PCL with other biopolymers such as sodium alginate [121] and 

biodegradable continuous PGA suture yarn [122]. A considerable improvement in the tensile strength and 

modulus of the strengthened PCL was obtained compared to those of PGA-free scaffolds. The composite 

substrate degraded twenty times faster than additive-free PCL, and it did not exhibit any sign of 

cytotoxicity. 3D printed PCL containing PLGC copolymer scaffold encapsulated with dental pulp stem 

cells was shown to promote bone repairing [123]. Bombyx mori silk microparticles (SMP) were also 

loaded in various mass fractions into PCL. These microparticles enhanced the shear thinning, the storage 

modulus, and the compressive elastic modulus, and the hydrophobicity of the scaffolds. On day 21, the 

scaffold containing ten wt% of SMP showed noticeably high human adipose derived MSCs viability and 

proliferation. Calcium mineral deposits were detected to growth with SMP weight fraction [40]. 

 
Fig. 6  NaOH treated PCL-BO composite scaffolds with hBMSCs encapsulated to promote osteogenic 

differentiation in vivo. (a) A scaffold was implanted inside a nude mouse. (b) Scaffolds were harvested after two 

months of culture. (c) Hematoxylin and Eosin staining of modified and unmodified scaffolds. (d) Masson's 

trichrome staining of modified and unmodified scaffolds. (e) Immunohistochemistry staining for osteocalcin of 

modified and unmodified scaffolds. (f) Semi-quantitative analysis [108]. 
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Microcrystalline cellulose (MCC)/PCL [124] and bacterial cellulose (BC)/PCL [125] composite scaffolds 

and printed PCL platforms containing aspirin-loaded liposomes and bone-forming peptide-1 [126] were 

revealed to have enhanced biocompatibility and cell proliferation. Wang et al., in another work, formed 

PCL/osteogenic growth peptide (OGP) scaffolds by adding OGP to PCL. Such constructs had hydrophilic 

properties, suitable surface features, induced osteogenesis, and ability to the restorative bone in a rat 

cranial bone defect model [127]. 

Traditional electrospun scaffolds produced by electrospinning has typically nanoporous structures, 

which can negatively affect cell infiltration. For that reason and to address the low resolution of 3D 

printing techniques, PCL/gelatin nanofibers were infused into the meshes of PCL to produce a composite 

scaffold. It had a higher compressive modulus than that of the lyophilized electrospun scaffold. The 3D 

scaffolds were noticed to have proper biocompatibility, and MC3T3-E1 cells revealed higher infiltration 

within the composite than on the gelatin-free substrate, which could result from the microporous 

structure [128]. In recent work, the compressive strength and biocompatibility of PCL/gelatin/Halomonas 

levan (HLh) scaffolds decreased and increased, respectively, with the increasing HLh amount in 

PCL/gelatin composites [129]. 

 

   3.3. 3D Printed PCL-Bioceramic-Biopolymer Composite Scaffolds 
3D printing scaffolds made of various components, namely PCL, PCL/ polyvinyl acetate (PVAc), 

PCL/HA, and PCL/PVAc/HA, were evaluated for bone repair. Porous channel structures were achieved 

in scaffolds with a pore size and porosity up to 475 mm and 76.1%, respectively. The addition of HA and 

PVAc had an opposite influence on scaffolds' compressive modulus. In contrast, the former led to an 

improvement in the modulus; the latter resulted in a decrease in it. Cell proliferation and bone formation 

rates were higher for the PCL/PVAc/HA than for other scaffolds [130]. A gene-activated bioink was 

formed by combining Arg-Gly-Asp-g-irradiated alginate and nHA complexed to plasmid DNA. BMSCs-

laden ink was co-printed with PCL supporting mesh. These constructs were demonstrated to support high 

rates of vascularisation and mineralization instead of non-cell-containing structures [131]. Cellulose 

nanofibrils material (CNF) was shown to support the development of a well-organized actin cytoskeleton 

on the surfaces of TCP/PCL scaffolds. Besides, ALP, collagen type1, and mineral production were 

induced within CNF-coated surfaces [132]. Likewise, 3-poly-L-lysine (EPL) polypeptide was utilized for 

surface alteration of FDM printed PCL/HA scaffolds. Such composites with interconnected pores 

displayed rough surfaces, to some extent, and enhanced mechanical performance because of loading HA 

fillers. Following being modulated by EPL, favorable osteoconductivity, and antibacterial activity of 

EPL/PCL/HA composites were observed [64]. With nHA and continuous biodegradable PGA suture yarn, 

PCL-based scaffolds displayed a distinguished increase in tensile strength, modulus of elasticity, 

compressive strength, and cell adhesion compared to unmodified PCL [133]. Computer tomography data 

can be utilized to make 3D PCL porous cages using various kinds of polymer spools: PCL, PCL- PLA, 

and PCL/HA. Log-pile scaffolds could be permeated with a blend of cells and gelatin hydrogel to remedy 

complex bone defects [44]. In a study by Goncalves et al., printable carbon nanotubes (CNT)/HA/PCL 

composite scaffold was shown to have an interconnected network of square pores and compressive 

strength compatible with the trabecular bone, and proper cell adhesion [134]. 

 

4. Conclusions and Future Prospects 
3D bioprinting has become a promising route to manufacture bioengineered scaffolds to treat patient-

specific bone defects. This technique produces well-organized predefined, highly porous 

microarchitecture and biomimetic scaffolds that can have enhanced functionality and adequate 

mechanical behavior. This can be achievable by controlling various printing factors that provide an 

aseptic environment for bone regeneration. PCL-based scaffolds have been extensively utilized to 

engineer bone tissue in combination with other bioactive organic and/or inorganic compounds. 

Incorporating such bioactive materials into PCL can provide scaffolds that mimic the intricate construct, 

composition, and biomechanics of bone tissue leading to improvement in cellular response, 

osteoconductive and mechanical performance of PCL-based composites. For instance, PCL/HA/BG 

scaffold was a prospective candidate for engineering bone tissue in terms of having better mechanical and 

biological properties than that of unreinforced PCL. 
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Even though numerous studies have examined the capability of 3D printing to produce bone tissue 

substrates, the renewal of complex bone defects is a substantial clinical challenge. Despite being one of 

the utmost practiced additive manufacturing to fabricate affordable intricate 3D structures for bone repair, 

the layer thickness and appearance, filament dimension and orientation, void creation, and interlayer 

distortion can cause mechanically weak FDM 3D printed substrates. Besides, the deficiency of resolution, 

the inadequate surface quality of the printable inks with mass production, and the narrow range of 

utilized printable materials are chief challenges that arise in 3D printed composites, all of which require 

more work for further advancement in FDM 3D printed bone tissue scaffolds. 
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